The lead acid battery works well at cold temperatures and is superior to lithium-ion when operating in sub-zero conditions. Lead acid batteries can be divided into two main classes: vented lead acid batteries (spillable) and valve regulated lead acid (VRLA) batteries (sealed or non-spillable). 2. Vented Lead Acid Batteries
... lead-acid battery, a voltage is produced when reaction occurs between the lead electrodes and sulfuric acid and water electrolytes . The schematic view of lead-acid battery is depicted in Figure 2.
The nominal capacity of sealed lead acid battery is calculated according to JIS C8702-1 Standard with using 20-hour discharge rate. For example, the capacity of WP5-12 battery is 5Ah, which means that when the battery is discharged with C20 rate, i.e., 0.25 amperes, the discharge time will be 20 hours.
Various capacity parameters of lead-acid batteries are: energy density is 60-75 Wh/l, specific energy is 30-40 Wh/Kg, charge/discharge efficiency is 50-92%, specific power is 180 W/kg, self discharge rate is 3-20%/month, cycle durability is 500-800 cycles and nominal cell voltage is 2.105 V . ... [...] ...
2. Vented Lead Acid Batteries Vented lead acid batteries are commonly called “flooded”, “spillable” or “wet cell” batteries because of their conspicuous use of liquid electrolyte (Figure 2). These batteries have a negative and a positive terminal on their top or sides along with vent caps on their top.
Acid burns to the face and eyes comprise about 50% of injuries related to the use of lead acid batteries. The remaining injuries were mostly due to lifting or dropping batteries as they are quite heavy. Lead acid batteries are usually filled with an electrolyte solution containing sulphuric acid.