Although academic analysis finds that business models for energy storage are largely unprofitable, annual deployment of storage capacity is globally on the rise (IEA, 2020). One reason may be generous subsidy support and non-financial drivers like a first-mover advantage (Wood Mackenzie, 2019).
Although electricity storage technologies could provide useful flexibility to modern power systems with substantial shares of power generation from intermittent renewables, investment opportunities and their profitability have remained ambiguous.
These technologies convert electrical energy to various forms of storable energy. For mechanical storage, we focus on flywheels, pumped hydro, and compressed air energy storage (CAES). Thermal storage refers to molten salt technology. Chemical storage technologies include supercapacitors, batteries, and hydrogen.
Where a profitable application of energy storage requires saving of costs or deferral of investments, direct mechanisms, such as subsidies and rebates, will be effective. For applications dependent on price arbitrage, the existence and access to variable market prices are essential.
Business Models for Energy Storage Rows display market roles, columns reflect types of revenue streams, and boxes specify the business model around an application. Each of the three parameters is useful to systematically differentiate investment opportunities for energy storage in terms of applicable business models.
The literature on energy storage frequently includes “renewable integration” or “generation firming” as applications for storage (Eyer and Corey, 2010; Zafirakis et al., 2013; Pellow et al., 2020).