Electrochemical energy storage systems have the potential to make a major contribution to the implementation of sustainable energy. This chapter describes the basic principles of electrochemical energy storage and discusses three important types of system: rechargeable batteries, fuel cells and flow batteries.
Research on electrochemical energy storage is emerging, and several scholars have conducted studies on battery materials and energy storage system development and upgrading [, , ], testing and application techniques [16, 17], energy storage system deployment [18, 19], and techno-economic analysis [20, 21].
This chapter describes the basic principles of electrochemical energy storage and discusses three important types of system: rechargeable batteries, fuel cells and flow batteries. A rechargeable battery consists of one or more electrochemical cells in series.
D. N. Buckley, C. O'Dwyer, N. Quill, and R. P. Lynch, in Energy Storage Options and Their Environmental Impact, ed. R. E. Hester and R. M. Harrison, The Royal Society of Chemistry, 2018, pp. 115-149. Electrochemical energy storage systems have the potential to make a major contribution to the implementation of sustainable energy.
Keywords in this area encompass high performance, high capacity, density, and electrochemical properties, among others. The field of electrochemical energy storage exhibits a strong emphasis on performance aspects, such as high capacity, high energy density, and high-power-density.
The field of electrochemical energy storage exhibits a strong emphasis on performance aspects, such as high capacity, high energy density, and high-power-density. Based on Fig. 5, which displays the co-occurrence graph of keywords, research on electrochemical materials shows a close correlation with the investigation of EES performance.