However, if energy storage is to function as a system, the Energy Management System (EMS) becomes equally important as the core component, often referred to as the 'brain.' EMS is directly responsible for the control strategy of the energy storage system.
According to a recent World Bank report on Economic Analysis of Battery Energy Storage Systems May 2020 achieving efficiency is one of the key capabilities of EMS, as it is responsible for optimal and safe operation of the energy storage systems. The EMS system dispatches each of the storage systems.
EMS is directly responsible for the control strategy of the energy storage system. The control strategy significantly impacts the battery's decay rate, cycle life, and overall economic viability of the energy storage system. Furthermore, EMS plays a vital role in swiftly protecting equipment and ensuring safety.
A: An EMS is compatible with various energy storage systems, including lithium-ion batteries, flow batteries, and pumped hydro storage. By integrating with energy storage devices, an EMS can optimize the charging and discharging cycles, extending the lifespan of the storage system and improving overall system efficiency.
The EMS system dispatches each of the storage systems. Depending on the application, the EMS may have a component co-located with the energy storage system (Byrne 2017).
This type of energy storage EMS is commonly referred to as a traditional energy storage EMS. However, the traditional EMS cannot be directly used for industrial and commercial energy storage due to different scenarios and cost requirements.