Stationary storage will also increase battery demand, accounting for about 400 GWh in STEPS and 500 GWh in APS in 2030, which is about 12% of EV battery demand in the same year in both the STEPS and the APS. IEA. Licence: CC BY 4.0 Battery production has been ramping up quickly in the past few years to keep pace with increasing demand.
According to the current standards, domestic lithium-ion battery storage systems are covered by the safety standards. The first edition of IEC 62933-5-2, which has recently been published, is specifically designed for the safety of domestic energy storage systems.
There is limited experience with fires involving domestic lithium-ion battery storage systems. However, with the worldwide growth of EV and BESS applications, it is important to improve our understanding of how large battery systems behave when abused.
Despite the continuing use of lithium-ion batteries in billions of personal devices in the world, the energy sector now accounts for over 90% of annual lithium-ion battery demand. This is up from 50% for the energy sector in 2016, when the total lithium-ion battery market was 10-times smaller.
Even though few incidents with domestic battery energy storage systems (BESSs) are known in the public domain, the use of large batteries in the domestic environment represents a safety hazard. This report undertakes a review of the technology and its application, in order to understand what further measures might be required to mitigate the risks.
Lithium-ion batteries dominate both EV and storage applications, and chemistries can be adapted to mineral availability and price, demonstrated by the market share for lithium iron phosphate (LFP) batteries rising to 40% of EV sales and 80% of new battery storage in 2023.