When building a large capacitor of this type, we suggest that you use nylon bolts at the corners to hold it all together. The bolt holes should be pre-drilled before assembly, and all chips cleared away. Make sure the plate-to-edge spacing is adequate for the voltage you will subject the capacitor to.
Although modern manufacturing technology allows capacitors to be made extremely small and high-capacity, you can make your own capacitors at home with common household materials! A capacitor is made of two conductive plates with a gap in-between. When electric charge builds up on one plate, it causes the opposite charge to build up on the other.
If you want to make a capacitor for a hobby project, and you need it to have specific capacitance, odds are you will need more capacitance than a few picofarads. In order to get more capacitance, look at the formula from before: -Make the dielectric constant larger: Pick a new material that will give you a better result.
Capacitors range from a simple, low-voltage setup to complex high-voltage machinery. If you just want to try your hand at making a simple capactior, our how-to guide will show you how! Fill a non-metallic vessel (such as a paper cup, or a plastic bottle) with warm saltwater. Use warm water to dissolve the salt.
This page is an attempt to demonstrate just how much capacity a super capacitor has. A one farad super capacitor can store one million time more energy at a common voltage, than a 1uf capacitor, one billion times more than a 1nf capacitor, and one trillion times more than a 1pf capacitor.
Of course physical size, weight, and fragility are also important characteristics of capacitor design. If you have size limitations, Mylar is the best dielectric material to use since it has a very high puncture voltage per mil, and thus makes a very compact capacitor. Plastics are light, so most capacitors will weigh less than ten pounds.