Europe took a different tack. The Eurobat Guide for the Specification of Valve Regulated Lead-Acid Stationary Cells and Batteries defines design life as follows: “The design life is the estimated life determined under laboratory conditions, and is quoted at 20°C using the manufacturer’s recommended float voltage conditions.” 6
The lead–acid battery is an old system, and its aging processes have been thoroughly investigated. Reviews regarding aging mechanisms, and expected service life, are found in the monographs by Bode and Berndt , and elsewhere , . The present paper is an up-date, summarizing the present understanding.
On the other hand, at very high acid concentrations, service life also decreases, in particular due to higher rates of self-discharge, due to gas evolution, and increased danger of sulfation of the active material. 1. Introduction The lead–acid battery is an old system, and its aging processes have been thoroughly investigated.
In order to obtain the best service life, over-charge of batteries should be avoided, and charging should be carried out by appropriately limiting end-of-charge voltage. At the operating potential of the positive electrode, corrosion is accompanied by oxygen evolution.
IEEE 450 and 1188 prescribe best industry practices for maintaining a lead-acid stationary battery to optimize life to 80% of rated capacity. Thus it is fair to state that the definition for reliability of a stationary lead-acid battery is that it is able to deliver at least 80% of its rated capacity.
The cycle life of lead/acid batteries is often quoted at only one depth-of-discharge (often 80%). To a first approximation, the cycle life at other depths- of-discharge can be estimated by assuming that the number of cycles multiplied by the depth-of-discharge per cycle is a constant .