The combination of renewable energy generation and efficient energy storage systems, including lithium-ion batteries, is paving the way for a cleaner, more sustainable energy future. As energy storage costs continue to decline, renewable energy storage solutions are becoming increasingly economically viable.
Lithium, primarily through lithium-ion batteries, is a critical enabler of the renewable energy revolution. Energy storage systems powered by lithium-ion batteries allow for the efficient integration of intermittent renewable energy sources into our grids, providing stability, reliability, and backup power.
Lithium Iron Phosphate (LFP) and Lithium Nickel Manganese Cobalt Oxide (NMC) are the leading lithium-ion battery chemistries for energy storage applications (80% market share). Compact and lightweight, these batteries boast high capacity and energy density, require minimal maintenance, and offer extended lifespans.
Panama expects total energy demand to more than double between 2017 and 2030 (+113%), with peak demand growing from 1.6 GW to 3.5 GW. Panama is currently connected to Costa Rica via a 300 MW transmission line. A 400 MW high-voltage direct current (HVDC) interconnector with Colombia is expected to be commissioned by 2022.
Hydropower harnesses the energy of flowing or falling water to generate electricity. Hydroelectric power does not require lithium for its generation; however, lithium-ion batteries can be used for energy storage in hydroelectric systems to improve grid stability and balance supply and demand.
While solar energy generation does not inherently rely on lithium, lithium-ion batteries are commonly used to store surplus solar energy for later use during periods of low sunlight or high demand. Biomass energy is derived from organic matter and can be used for heat or electricity generation.