Our area of expertise lies in industrial applications such as forklift truck lead acid batteries and we specialize in how to maximize the performance of the batteries to match and even reach beyond the life expectancy of the trucks themselves. In these applications the average guaranteed lifespan of a basic lead acid battery is around 1,500 cycles.
Several factors can affect the lifespan of a lead-acid battery, including temperature, usage, maintenance, and quality. High temperatures can shorten the lifespan of a battery, while proper usage and maintenance can extend it. The quality of the battery is also a significant factor in determining its lifespan.
All rechargeable batteries degrade over time. Lead acid and sealed lead acid batteries are no exception. The question is, what exactly happens that causes lead acid batteries to die? This article assumes you have an understanding of the internal structure and make up of lead acid batteries.
Over time, the repeated charging and discharging of a lead-acid battery can cause the plates to degrade and the electrolyte to lose its effectiveness. This can lead to a decrease in the battery’s capacity and lifespan. In the next section, I will discuss the lifespan of lead-acid batteries and factors that can affect it.
At the same time the more watery electrolyte at the top half accelerates plate corrosion with similar consequences. When a lead acid battery discharges, the sulfates in the electrolyte attach themselves to the plates. During recharge, the sulfates move back into the acid, but not completely.
If lead acid batteries are cycled too deeply their plates can deform. Starter batteries are not meant to fall below 70% state of charge and deep cycle units can be at risk if they are regularly discharged to below 50%. In flooded lead acid batteries this can cause plates to touch each other and lead to an electrical short.