In addition, there are cost, and environmental aspects like CO 2 emissions (IEA, 2019) associated with the energy storage technologies, which must be identified and considered when planning and deciding the selection of technologies for installation in the grid systems of an area.
Demand and types of mobile energy storage technologies (A) Global primary energy consumption including traditional biomass, coal, oil, gas, nuclear, hydropower, wind, solar, biofuels, and other renewables in 2021 (data from Our World in Data2). (B) Monthly duration of average wind and solar energy in the U.K. from 2018 to 2020.
The benefit values for the environment were intermediate numerically in various electrical energy storage systems: PHS, CAES, and redox flow batteries. Benefits to the environment are the lowest when the surplus power is used to produce hydrogen. The electrical energy storage systems revealed the lowest CO 2 mitigation costs.
Various energy storage technologies also differ in their cost (Capital, running and maintenance, labor, and replacement after some intervals) but a wise decision can be made to implement the best-suited mechanism or a combination that matches most of the requirements and demands of a peculiar situation.
The storage system has opportunities and potentials like large energy storage, unique application and transmission characteristics, innovating room temperature super conductors, further R & D improvement, reduced costs, and enhancing power capacities of present grids.
However, during the working of the system at 60 °C, precipitation of carbonate, mobilization of dissolved oxygen, K and Li, and desorption of trace metals like Arsenic (As) could occur. The disposal problem of used material in energy storage devices can also appear, especially when these are not recyclable.