Polymer-based batteries, including metal/polymer electrode combinations, should be distinguished from metal-polymer batteries, such as a lithium polymer battery, which most often involve a polymeric electrolyte, as opposed to polymeric active materials. Organic polymers can be processed at relatively low temperatures, lowering costs.
The polymeric backbone as well as the conducting and binding materials (multi-walled carbon nanotubes and PVDF, respectively) revealed no significant influence on the electrochemical behavior and, as a consequence, the polymers were employed as active material in a composite electrode for lithium organic batteries.
Polymers play a crucial role in improving the performance of the ubiquitous lithium ion battery. But they will be even more important for the development of sustainable and versatile post-lithium battery technologies, in particular solid-state batteries.
In a commercially available Li-ion battery, the Li+ ions are diffused slowly due to the required intercalation and can generate heat during charge or discharge. Polymer-based batteries, however, have a more efficient charge/discharge process, resulting in improved theoretical rate performance and increased cyclability.
(2) Thus, well-known polymers such as poly (vinylidene fluoride) (PVDF) binders and polyolefin porous separators are used to improve the electrochemical performance and stability of the batteries. Furthermore, functional polymers play an active and important role in the development of post-Li ion batteries.
A new poly (styrene-butene/ethylene-styrene) polymer binder (SEBS) has been recently proposed for both electrodes (anode and cathode) in printed batteries, in order to provide better mechanical stability and a more effective electronic conductive network .
OverviewSafetyHistoryElectrochemistryCharge and dischargeTypes of active materialsControl and performanceAdvantages
A 2009 study evaluated the safety of a hydrophilic radical polymer and found that a radical polymer battery with an aqueous electrolyte is nontoxic, chemically stable, and non-explosive, and is thus a safer alternative to traditional metal-based batteries. Aqueous electrolytes present a safer option over organic electrolytes which can be toxic and can form HF acid. The one-electron redox reaction of a radical polymer electrode during charging generates little heat and therefore …