When light shines on a photovoltaic (PV) cell – also called a solar cell – that light may be reflected, absorbed, or pass right through the cell. The PV cell is composed of semiconductor material; the “semi” means that it can conduct electricity better than an insulator but not as well as a good conductor like a metal.
When photons, particles of light, strike the solar cell, they can be absorbed if their energy matches or exceeds the band gap energy. Shorter wavelengths, such as UV and blue light, carry higher energy photons. Silicon solar cells are efficient at absorbing these shorter wavelengths.
PV cells, or solar cells, generate electricity by absorbing sunlight and using the light energy to create an electrical current. The process of how PV cells work can be broken down into three basic steps: first, a PV cell absorbs light and knocks electrons loose. Then, an electric current is created by the loose-flowing electrons.
A solar cell is a device people can make that takes the energy of sunlight and converts it into electricity. How does a solar cell turn sunlight into electricity? In a crystal, the bonds [between silicon atoms] are made of electrons that are shared between all of the atoms of the crystal.
Simply put, photovoltaic cells allow solar panels to convert sunlight into electricity. You've probably seen solar panels on rooftops all around your neighborhood, but do you know how they work to generate electricity?
Solar panels are built with materials that physically interact with certain wavelengths of solar energy. This enables them to transform solar energy into electricity. Here’s how solar panels absorb and store energy. What’s in a solar panel? Traditional solar panels are made with silicon crystals. Silicon is a very special material.