Lithium (Li) metal is widely recognized as a highly promising negative electrode material for next-generation high-energy-density rechargeable batteries due to its exceptional specific capacity (3860 mAh g −1), low electrochemical potential (−3.04 V vs. standard hydrogen electrode), and low density (0.534 g cm −3).
This mini-review discusses the recent trends in electrode materials for Li-ion batteries. Elemental doping and coatings have modified many of the commonly used electrode materials, which are used either as anode or cathode materials. This has led to the high diffusivity of Li ions, ionic mobility and conductivity apart from specific capacity.
Lithium (Li) metal shows promise as a negative electrode for high-energy-density batteries, but challenges like dendritic Li deposits and low Coulombic efficiency hinder its widespread large-scale adoption.
Energy storage is considered a key technology for successful realization of renewable energies and electrification of the powertrain. This review discusses the lithium ion battery as the leading electrochemical storage technology, focusing on its main components, namely electrode (s) as active and electrolyte as inactive materials.
The positive electrode is activated carbon and the negative electrode is Li [Li 1/3 Ti 5/3 ]O 4. The idea has merit although the advantage of lithium-ion battery concept is limited because the concentration of lithium salt in electrolyte varies during charge and discharge.
Two-dimensional materials are considered to be promising anode electrodes for metal ion batteries. Different carbon nitrogen structures, which were C 2 N, C 3 N, and g-C 3 N 4 were used as anode materials in LIBs (Fig. 5.). According to Zhang et al., C 2 N exhibited a high theoretical capacity (588.4 mAh/g) for LIBs.