According to Billotto, these adhesive materials act as interfaces between the battery cells and the cooling plates, ensuring heat is efficiently dissipated during charging and discharging. These adhesives enhance battery longevity by helping keep the batteries within the optimal temperature range (typically 35-60°C).
For this reason, thermal adhesives are used at several locations in battery modules, such as between individual cells, or between cells and cooling plates. Structural adhesives are used in EV battery packs to create bonds that can withstand various environmental conditions and mechanical loads.
Dupont’s BETAMATE (5) and BETAFORCE (7) are part of a broad portfolio of adhesives for numerous EV applications. The next generation of EV batteries is witnessing the emergence of cell-to-pack designs. These designs integrate battery cells into the pack using thermal structural adhesives.
Adhesives are used at several locations in battery modules to help dissipate heat, insulate electrical components, seal off against environmental damage, and create strong structural bonds. Here are common examples of where they are used:
Structural adhesives are used in EV battery packs to create bonds that can withstand various environmental conditions and mechanical loads. These adhesives provide shear and tensile strength to increase protection against external forces such as impacts, vibrations, and loads. With structural adhesives, battery components are stronger together.
These adhesives keep the cells firmly in place throughout the vehicle's lifespan. Adhesive technology plays a vital role in the assembly and performance of electric vehicle battery packs. From ensuring structural integrity to managing heat and enhancing safety, adhesives, and sealants contribute significantly to the success of EVs.