The manufacturing approach for solid-state batteries is going to be highly dependent on the material properties of the solid electrolyte. There are a range of solid electrolytes materials currently being examined for solid-state batteries and generally include polymer, sulfide, oxides, and/or halides (Fig. 2 a).
It is likely that solid-state batteries will adopt manufacturing approaches from both the solid oxide fuel cell and conventional battery manufacturing community. Ultimately, advanced coating technologies are necessary to achieve control over microstructure, interfaces, and form factor.
Current key interests include solid-state batteries, solid electrolytes, and solid electrolyte interfaces. He is particularly interested in kinetics at interfaces. Abstract Solid-state batteries are considered as a reasonable further development of lithium-ion batteries with liquid electrolytes.
For forming, the cell is charged and discharged with low currents. It is expected that for solid-state batteries, one cycle is sufficient to complete the forming process . In the next step the cell is monitored for several days under controlled conditions to identify damaged cells.
In this study, the conventional production of lithium-ion batteries is reconsidered, and the feasibility of seamlessly integrating sulfide-based solid-state batteries into the existing process chains is discussed. Scalable technologies and key challenges along the process chain of sulfide-based solid-state batteries are accordingly addressed.
Abstract Solid-state batteries are considered as a reasonable further development of lithium-ion batteries with liquid electrolytes. While expectations are high, there are still open questions conc...