Battery-powered motor applications need careful design work to match motor performance and power-consumption profiles to the battery type. Optimal motor and battery pairing relies on the selection of an efficient motor as well as a battery with the appropriate capacity, cost, size, maintainability, and discharge duration and curve.
Battery capacity is based on the desired operational run time of the equipment between recharging cycles and is simply the amount of charge a battery can hold. The standard measure for battery capacity is milliampere-hours (mAh) or amp-hours (Ah), which indicates how long the battery will last based on the current it outputs.
One key motor performance parameter to consider in a battery-powered application is efficiency. Maximizing motor efficiency helps minimize the required power capacity and hence the size and cost of the battery solution. For this reason, brushless DC (BLDC) motors are preferred over brushed DC motors but are typically higher in price.
Batteries measure their capacity in milliamp hours, mAh. This states how many hours the battery can supply 1 mA of current, or how many mA of current it can supply for one hour. The current draw depends on the motor, for this, we can refer to the datasheets found on the product pages.
Power Requirements In any electric motor application, the desired equipment performance dictates the power requirements of the motor. The rated power of the motor is calculated from the combination of speed, torque, and duty cycle of the application that in turn establishes the critical voltage, current, and capacity requirements of the battery.
Optimal motor and battery pairing relies on the selection of an efficient motor as well as a battery with the appropriate capacity, cost, size, maintainability, and discharge duration and curve. Battery-powered AGVs for automated warehousing require brushless dc motors engineered for top efficiency.