Among many solid electrolytes, the perovskite-type lithium-ion solid electrolytes are promising candidates that can be applied to all-solid-state lithium batteries. However, the perovskite-type solid electrolytes still suffer from several significant problems, such as poor stability against lithium metal, high interface resistance, etc.
It is shown here that the perovskite-type SrVO 3 can achieve excellent electrochemical performance as lithium-ion battery anodes thanks to its high electrically and ionically conductivity.
Moreover, perovskites can be a potential material for the electrolytes to improve the stability of batteries. Additionally, with an aim towards a sustainable future, lead-free perovskites have also emerged as an important material for battery applications as seen above.
This study highlights the perovskite-type SrVO 3 as a promising Li + -storage anode and provides opportunities for exploring a variety of perovskite oxides as next-generation metal-ion battery anodes. The authors declare no conflict of interest.
In an initial investigation , iodide- and bromide-based perovskites (CH 3 NH 3 PbI 3 and CH 3 NH 3 PbBr 3) were reported as active materials for Li-ion batteries with reversible charge-discharge capacities.
In various dimensions, low-dimensional metal halide perovskites have demonstrated better performance in lithium-ion batteries due to enhanced intercalation between different layers. Despite significant progress in perovskite-based electrodes, especially in terms of specific capacities, these materials face various challenges.