2. Solid Electrolytes: The Heart of Solid-State Batteries The gradual shift to solid electrolytes has been influenced by the prior development of conventional lithium (Li) batteries, which have traditionally employed liquid electrolytes.
In 2011, Bolloré of France introduced the first commercialize solid-state batteries for electric vehicles with only approximate 100 Wh/kg energy density. 5 years later, another solid-state electrolyte lithium metal battery was introduced by America Solid Energy Company reached 300 Wh/kg.
Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies. Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward achieving commercial feasibility.
The field of solid electrolytes has seen significant strides due to innovations in materials and fabrication methods. Researchers have been exploring a variety of new materials, including ceramics, polymers, and composites, for their potential in solid-state batteries.
The research not only describes a new way to make solid state batteries with a lithium metal anode but also offers new understanding into the materials used for these potentially revolutionary batteries. The research is published in Nature Materials.
All-solid-state micro lithium-ion batteries fabricated by using dry polymer electrolyte with micro-phase separation structure. Electrochem. Commun. 9, 2013–2017 (2007). Long, J. W., Dunn, B., Rolison, D. R. & White, H. S. 3D architectures for batteries and electrodes. Adv. Energy Mater. 10, 1–6 (2020).