Flexible batteries have applications in a growing number of fields, including wearable medical devices and biomedical sensors, flexible displays and smartwatches. Health-related applications powered by these batteries could transmit data wirelessly to healthcare providers, facilitating remote patient monitoring.
Flexible batteries have the potential to develop an ideal energy storage system for future electronics due to their advantages in safety, working temperature, high energy density, and packaging. The entire battery architecture must be transformed to design flexible batteries, including active materials, electrolyte, and separators.
As the market demand for wearable technologies continues to grow, the future of flexible batteries is promising, and further advances are likely. As with all batteries, one hurdle to overcome is their safe disposal and recycling, which should come as the technology and associated applications become circular.
Packaging materials should be to be thin, lightweight, and soft. Since all components of flexible batteries are flexible, the packing coating should be flexible at the same level. Commonly, Al foil is used between plastic and flexible batteries to prevent air and moisture, but it is not flexible and thick, which limits energy density.
Compared to conventional rigid batteries configurations, the energy density of flexible batteries is significantly reduced due to the inclusion of a substantial amount of electrochemically inactive materials necessary for ensuring the flexibility of the batteries.
This exploration gives birth to flexible batteries, particularly lithium-based batteries, promising materials for ultra-modern, smart wearable devices. In recent years, research has focused on flexible batteries because of their potential to enable more adaptable, flexible, and comfortable electronic products.