Lithium-ion batteries: While lithium-ion batteries have a lower energy density compared to lithium batteries, they excel in terms of rechargeability, making them suitable for a wide range of applications. Lithium batteries: Lithium batteries are typically designed for single-use applications and do not support rechargeability.
Solid-state batteries and lithium-ion batteries are two different types of energy storage technologies. They have distinct chemistries, constructions, and performance characteristics. This comparative analysis will explore the features, advantages, disadvantages, applications, and current development status of solid-state and lithium-ion batteries.
Lithium batteries: Lithium batteries typically refer to non-rechargeable, primary batteries. These batteries use lithium metal as one of their primary components. The lithium metal reacts with other materials within the battery to produce electrical energy. Lithium batteries can typically be found in wrist watches, TV remotes and children’s toys.
Despite the continuing use of lithium-ion batteries in billions of personal devices in the world, the energy sector now accounts for over 90% of annual lithium-ion battery demand. This is up from 50% for the energy sector in 2016, when the total lithium-ion battery market was 10-times smaller.
Lithium-ion batteries dominate both EV and storage applications, and chemistries can be adapted to mineral availability and price, demonstrated by the market share for lithium iron phosphate (LFP) batteries rising to 40% of EV sales and 80% of new battery storage in 2023.
While there are some commonalities, the safety considerations for a lithium vs lithium-ion battery may differ slightly. Both types of batteries require careful handling, storage, and usage practices to minimise the risk of accidents or hazards associated with their chemical properties.