To reduce the safety risk associated with large battery systems, it is imperative to consider and test the safety at all levels, from the cell level through module and battery level and all the way to the system level, to ensure that all the safety controls of the system work as expected.
Battery power has been around for a long time. The risks inherent in the production, storage, use and disposal of batteries are not new. However, the way we use batteries is rapidly evolving, which brings these risks into sharp focus.
Weight: While many of the dangers/hazards associated with batteries can be attributed to their internal mechanics and chemistry, a potential danger that many overlook is the battery apparatus itself.
Where the battery is damaged, it can overheat and catch fire without warning. Batteries should be checked regularly for any signs of damage and any damaged batteries should not be used. The incorrect disposal of batteries – for example, in household waste – can lead to batteries being punctured or crushed.
Lithium-ion battery fire hazards are associated with the high energy densities coupled with the flammable organic electrolyte. This creates new challenges for use, storage, and handling.
Legal regime The UK already has legislation in place dealing with fire and safety risks such as those posed by batteries. For example, the Health and Safety at Work etc Act 1974 (‘the 1974 Act’) requires employers to ensure the safety of their workers and others in so far as is reasonably practicable.