Graphite is the most commercially successful anode material for lithium (Li)-ion batteries: its low cost, low toxicity, and high abundance make it ideally suited for use in batteries for electronic devices, electrified transportation, and grid-based storage.
Graphite is a perfect anode and has dominated the anode materials since the birth of lithium ion batteries, benefiting from its incomparable balance of relatively low cost, abundance, high energy density, power density, and very long cycle life.
Graphite is the most common material used for the anode of lithium-ion batteries. Here’s why. Lithium-ion batteries are made from a variety of materials. The anode is made from carbon graphite, which can store and release lithium ions during charging and discharging. Alexandra Perebikovsky/UC IRVINE
Fig. 1 Illustrative summary of major milestones towards and upon the development of graphite negative electrodes for lithium-ion batteries. Remarkably, despite extensive research efforts on alternative anode materials, 19–25 graphite is still the dominant anode material in commercial LIBs.
Let’s consider the anode. The graphite material of the anode is placed in sheets or layers and reversibly allows the placement of lithium ions into (intercalation) or out of (deintercalation) during charging and discharging, respectively.
The anode is a very vital element of the rechargeable battery and, based on its properties and morphology, it has a remarkable effect on the overall performance of the whole battery. As it stands, due to its unique hierarchical structure, graphite serves as the material used inmost of the commercially available anodes.