To conclude, we discuss what it will take for other PV technologies to compete with silicon on the mass market. Crystalline silicon solar cells are today’s main photovoltaic technology, enabling the production of electricity with minimal carbon emissions and at an unprecedented low cost.
The development of silicon-based photovoltaic (PV) cells began with the discovery of the photovoltaic effect by Alexandre-Edmond Becquerel in 1839.
Thin-film silicon solar cells The thin-film silicon solar cell technology is based on a versatile set of materials and alloys, in both amorphous and microcrystalline form, grown from precursor gases by PECVD.
Eventually, the combination of high-bandgap and low-bandgap thin-film solar cells (such as perovskite/perovskite) could combine high efficiency and low cost, spelling the death of crystalline silicon PV technology.
TOPCon solar cells have one of the highest efficiencies among the solar cells available in the market, with a maximum recorded efficiency of 26.4% . TOPCon cells are made from N-type (phosphorous doped) monocrystalline silicon wafers. Figure 1 shows a comparison between the solar cell architectures of PERC and TOPCon solar cells . Figure 1.
We discuss the major challenges in silicon ingot production for solar applications, particularly optimizing production yield, reducing costs, and improving efficiency to meet the continued high demand for solar cells. We review solar cell technology developments in recent years and the new trends.