In fact, the lead acid battery industry recycled >99% of the available lead scrap from spent lead acid batteries from 1999 to 2003, according to a report issued by the Battery Council International (BCI) in June 2005, ranking the lead recycling rate higher than that of any other recyclable material [ Gabby, 2006 ].
Lead from recycled lead–acid batteries has become the primary source of lead worldwide. Battery manufacturing accounts for greater than 85% of lead consumption in the world and recycling rate of lead–acid batteries in the USA is about 99%. Therefore, battery manufacturing and recycled lead form a closed loop.
In the current lead refining process, the tin oxidizes to slag, making its recovery problematic and expensive. This paper aims to present an innovative method for the fire refining of lead, which enables the retention of tin contained in lead from recycled lead-acid batteries.
Recycling of lead-acid batteries flourishes because manufacturers seek the material as a source to make new battery products, which are profitable. The battery chemistry of a lead-acid cell simplifies its recycling process, whereas that of a LIB complicates recycling.
The method has been successfully used in industry production. Recycling lead from waste lead-acid batteries has substantial significance in environmental protection and economic growth. Bearing the merits of easy operation and large capacity, pyrometallurgy methods are mostly used for the regeneration of waste lead-acid battery (LABs).
R Soc Open Sci. 2018 May; 5 (5): 171368. There is a growing need to develop novel processes to recover lead from end-of-life lead-acid batteries, due to increasing energy costs of pyrometallurgical lead recovery, the resulting CO 2 emissions and the catastrophic health implications of lead exposure from lead-to-air emissions.