Thin film solar cells are favorable because of their minimum material usage and rising efficiencies. The three major thin film solar cell technologies include amorphous silicon (α-Si), copper indium gallium selenide (CIGS), and cadmium telluride (CdTe).
The three most widely commercialized thin film solar cell technologies are CIGS, a-Si, and CdTe. The straight bandgap (Table 1) is a property shared by all three of these materials, and it is this property that allows for the use of extremely thin materials .
CIGS and CdTe hold the greatest promise for the future of thin film. Longevity, reliability, consumer confidence and greater investments must be established before thin film solar cells are explored on building integrated photovoltaic systems. 1.
CdTe thin film solar cells first emerged in the 1970s, Bonnet and Rabenhorst introduced CdS/CdTe heterojunction in CdTe devices, and achieved an efficiency of 6 %. Since then, researchers began to use this type of heterojunction to prepare CdTe thin film solar cells.
As research and development efforts continue, emerging thin-film solar cells are becoming more efficient, with improved power conversion rates and stability. The research goal in the emerging thin-film solar cells field is to advance the efficiency, stability, and scalability of this innovative solar technology.
With intense R&D efforts in materials science, several new thin-film PV technologies have emerged that have high potential, including perovksite solar cells, Copper zinc tin sulfide (Cu 2 ZnSnS 4, CZTS) solar cells, and quantum dot (QD) solar cells. 6.1. Perovskite materials