In order to design a liquid cooling battery pack system that meets development requirements, a systematic design method is required. It includes below six steps. 1) Design input (determining the flow rate, battery heating power, and module layout in the battery pack, etc.);
The development content and requirements of the battery pack liquid cooling system include: 1) Study the manufacturing process of different liquid cooling plates, and compare the advantages and disadvantages, costs and scope of application;
This demo shows an Electric Vehicle (EV) battery cooling system. The battery packs are located on top of a cold plate which consists of cooling channels to direct the cooling liquid flow below the battery packs. The heat absorbed by the cooling liquid is transported to the Heating-Cooling Unit.
1) Study the manufacturing process of different liquid cooling plates, and compare the advantages and disadvantages, costs and scope of application; 2) Develop a liquid cooling system with a more flexible flow channel design and stronger applicability, which is convenient for BATTERY PACK design;
By monitoring the maximum temperature of the module and the ambient temperature, a method for controlling the flow rate and the inlet temperature of the cooling water has been developed to implement an intermittent liquid cooling strategy for the battery module.
Liquid-cooled battery packs have been identified as one of the most efficient and cost effective solutions to overcome these issues caused by both low temperatures and high temperatures.