With regard to the “Condensed Battery”, CATL’s chief developer Wu Kai summarizes: “The battery combines innovative cathode materials with ultra-high energy density, new anode and separator materials with a completely new type of electrolyte”. – Lithium metal battery? – Silicon anode? – Anode-less battery? – Lithium-Sulfur battery?
Although still practically useful, LFP has only about half the energy density of cobalt and nickel batteries. Another appealing option are organic materials, but so far most of these materials have not been able to match the conductivity, storage capacity, and lifetime of cobalt-containing batteries.
Cobalt's role in enhancing energy density and ensuring stability in lithium-ion batteries is indisputable. These batteries rely on the movement of lithium ions (Li+) between the anode and the cobalt-containing cathode. And cobalt serves multiple vital functions:
In a new study, the researchers showed that this material, which could be produced at much lower cost than cobalt-containing batteries, can conduct electricity at similar rates as cobalt batteries. The new battery also has comparable storage capacity and can be charged up faster than cobalt batteries, the researchers report.
"Cobalt batteries can store a lot of energy, and they have all of features that people care about in terms of performance, but they have the issue of not being widely available, and the cost fluctuates broadly with commodity prices.
The reliance on cobalt in these cathodes is worrisome because it is a high-cost, rare material, with an unstable supply chain. This review describes the need and feasibility of developing cobalt-free high-nickel cathode materials for lithium-ion batteries.