The Inflation Reduction Act incentivizes large-scale battery storage projects. And California regulations now require energy storage for newly constructed commercial buildings. The same microgrid-based BESS can serve either or both of these use cases.
Another use case for battery storage on microgrids is aggregating BESS as a virtual power plant (VPP) to correct imbalances in the utility grid. At the grid level, when the supply of power from renewables temporarily drops, utilities need to respond quickly to maintain equilibrium between supply and demand and stabilize the grid frequency.
Because of the fundamental uncertainties inherent in microgrid design and operation, researchers have created battery and microgrid models of varying levels of complexity, depending upon the purpose for which the model will be used.
1. Background Microgrids are small self-reliant electricity grids that produce and distribute power across a limited area, such as a village or industrial complex. Microgrids can be grid-tied, where the system is able to connect with a larger traditional grid, or standalone systems where there is no outside electrical connection.
Microgrids can be grid-tied, where the system is able to connect with a larger traditional grid, or standalone systems where there is no outside electrical connection. The Energy Systems Model and this paper focus only on standalone systems.
Lithium-ion (Li-ion) batteries are the most highly developed option in size, performance, and cost. A broad ecosystem of manufacturers, system integrators, and complete system providers supports Li-ion technology. However, the vendors best equipped to bring value to microgrids bring the right components to each project.