The total energy of the battery pack in the vehicle energy storage battery system is at least 330 kWh. This value can ensure the driving range of the electric vehicle or the continuous power supply capacity of the energy storage system.
Discussion: The proposed liquid cooling structure design can effectively manage and disperse the heat generated by the battery. This method provides a new idea for the optimization of the energy efficiency of the hybrid power system. This paper provides a new way for the efficient thermal management of the automotive power battery.
The current in car energy storage batteries are mainly lithium-ion batteries, which have a high voltage platform, with an average voltage of 3.7 V or 3.2 V. Its energy storage density is 6-7 times higher than traditional lead-acid batteries.
To verify the effectiveness of the cooling function of the liquid cooled heat dissipation structure designed for vehicle energy storage batteries, it was applied to battery modules to analyze their heat dissipation efficiency.
This trend has shifted to 5.016MWh in 20ft container with liquid cooling system with 12P416S configuration of 314Ah, 3.2V LFP prismatic cells. For example, a 70MWh battery requirement would be fulfilled by 14 Nos. of 5MWh BESS systems. For a 2-hour storage project, a 35MW capacity PCS and transformer-integrated solution would be used.
Many companies have launched energy storage variant 314Ah cells with 401Wh/L and 179Wh/Kg with up to 12000 cycles at 70% SoH. Some companies are claiming 15000 cycles, which should suffice for one cycle per day for 20 years at a system level with calendar ageing and higher temperature operating conditions.