Lithium metal was used as a negative electrode in LiClO 4, LiBF 4, LiBr, LiI, or LiAlCl 4 dissolved in organic solvents. Positive-electrode materials were found by trial-and-error investigations of organic and inorganic materials in the 1960s.
Direct regeneration method of eutectic molten salt When it comes to recycling positive electrode materials for lithium-ion batteries, the main emphasis is on extracting valuable metal components as recycled raw materials, thereby indirectly achieving the reuse of lithium-ion positive electrode materials.
iv. Lithium-containing eutectic molten salts are employed to compensate for the lithium in spent lithium battery cathode materials, remove impurities, restore the cathode material structure, and directly recover electrode capacity, thereby regenerating lithium battery materials and restoring their original electrochemical performance.
In particular, the recent trends on material researches for advanced lithium-ion batteries, such as layered lithium manganese oxides, lithium transition metal phosphates, and lithium nickel manganese oxides with or without cobalt, are described.
Additionally, despite its promising development prospects [77, 78], silicon has not been extensively utilized as a lithium-ion negative electrode material on a large scale due to its main volume rapidly expanding during lithiation/delithiation, resulting in a significant reduction in battery capacity and performance .
The continuous progress in pyrometallurgical recovery technology for lithium batteries enables the efficient and environmentally friendly extraction of valuable metals, carbon, and direct regeneration of lithium battery cathode materials from waste lithium battery materials .