This study assesses the ability of a grid energy storage device to perform both peak shaving and frequency regulation. It presents a grid energy storage model using a modelled VRFB storage device and develops a controller to provide a net power output, enabling the system to continuously perform these functions.
This study presents the development of a storage system model in a distribution grid capable of providing frequency regulation and power supply services at the same time. The model considers a VRFB, which due to its response time and intrinsic characteristics, can provide multiple services effectively.
Various methods are employed to regulate frequency in power systems. Firstly, primary control adjusts generator outputs in real-time to counteract frequency deviations. Additionally, secondary control systems restore frequency to its nominal value by fine-tuning generator outputs.
During the extra power supply, the energy storage system actions as a load and gets itself charged whereas during the power shortage the energy storage system supplies power to keep the balance in demand and supply, and hence it lessens the frequency fluctuation.
This paper presents a technique for reducing the frequency fluctuation using the Advanced Energy Storage System with utility inductors. The proposed ESS acts as a load and gets itself charged as well as can supply power to maintain balance in demand and supply.
Here, we focused on this subject while conducting our research. The multi-timescale regulation capability of the power system (peak and frequency regulation, etc.) is supported by flexible resources, whose capacity requirements depend on renewable energy sources and load power uncertainty characteristics.