SLY Battery launches 5MWh liquid-cooled container energy storage product. This product is based on 314Ah battery cells, and the energy density per unit area is increased from the traditional 229.3kWh/m² to 275.5kWh/m².
The total energy of the battery pack in the vehicle energy storage battery system is at least 330 kWh. This value can ensure the driving range of the electric vehicle or the continuous power supply capacity of the energy storage system.
Discussion: The proposed liquid cooling structure design can effectively manage and disperse the heat generated by the battery. This method provides a new idea for the optimization of the energy efficiency of the hybrid power system. This paper provides a new way for the efficient thermal management of the automotive power battery.
According to calculations, a 20-foot 5MWh liquid-cooled energy storage container using 314Ah batteries requires more than 5,000 batteries, which is 1,200 fewer batteries than a 20-foot 3.44MWh liquid-cooled energy storage container using 280Ah energy storage batteries.
To verify the effectiveness of the cooling function of the liquid cooled heat dissipation structure designed for vehicle energy storage batteries, it was applied to battery modules to analyze their heat dissipation efficiency.
EnerD series products use CATL’s new generation of energy storage dedicated 314Ah batteries, equipped with CTP liquid cooling 3.0 high-efficiency grouping technology, optimizing the grouping structure and conductive connection structure of the cells, achieving a 20-foot single cabin power increase from 3.354MWh to 5.0 MWh.