A battery is an electrical component that is designed to store electrical charge (or in other words - electric current) within it. Whenever a load is connected to the battery, it draws current from the battery, resulting in battery discharge. Battery discharge could be understood to be a phenomenon in which the battery gets depleted of its charge.
The discharge current would have to be 30A to discharge the battery in 20 hours (600Ah / 20h). To work out the discharge time (the “C-rate”) from the Nominal Capacity and the Discharge current, divide the Nominal Capacity by the Discharge Current. This will give you the C-rate.
The battery discharge rate is the amount of current that a battery can provide in a given time. It is usually expressed in amperes (A) or milliamperes (mA). The higher the discharge rate, the more power the battery can provide. To calculate the battery discharge rate, you need to know the capacity of the battery and the voltage.
Maximum Continuous Discharge Current – The maximum current at which the battery can be discharged continuously. This limit is usually defined by the battery manufacturer in order to prevent excessive discharge rates that would damage the battery or reduce its capacity.
With a higher discharge current, of say 40A, the capacity might fall to 400Ah. In other words, by increasing the discharge current by a factor of about 7, the overall capacity of the battery has fallen by 33%. It is very important to look at the capacity of the battery in Ah and the discharge current in A.
Charging and Discharging Definition: Charging is the process of restoring a battery’s energy by reversing the discharge reactions, while discharging is the release of stored energy through chemical reactions. Oxidation Reaction: Oxidation happens at the anode, where the material loses electrons.