Recommendations include the use of computer-based simulation models, enhanced lab-scale experiments, and industry-scale implementation to ensure the sustainable recycling of silicon PV panels. Sajan Preet: Writing – review & editing, Writing – original draft, Formal analysis, Data curation, Conceptualization.
Pyrolysis and gravimetric separation methods are the most effective, which recovered 91.42 %and 94.25 % silver from crystalline panels and 96.10% silver from CIS PV panels. Yang et al. (2017) used methane sulphonic acid (MSA) with an oxidation agent (hydrogen peroxide) to extract silver from photovoltaic panels.
Table 5 represents the methods adopted by various researchers to recover valuable metals from silicon-based Photovoltaic solar panels. Wang et al. (2012) adopted a chemical etching process wherein Nitric acid with sulphuric acid as an oxidation agent is used to extract copper from PV panels.
Recycling process of silicon from PV panels. Etching solutions needed to be modified as per the kind of PV cells to be recycled. The addition of surfactants improved recovery rate of silicon. Huge loss of silicon during NaOH chemical etching process. Partial loss of silicon during the etching process.
The recovered silicon solar cells had an efficiency equivalent to real solar cells based on thermal cycling tests. Azeumo et al. (2019) experimentally observed that immersion of the EVA layer in toluene kept at 60 °C for 60 min led to the recovery of 95% of silicon solar cells.
The economic value of the valuable metals is $13.62/m 2, resulting in a profit of $1.19 per recycling of 1 m 2 of crystalline silicon PV panels. The breakdown of total revenue generated after selling the recovered valuable materials is as follows: 46% (aluminium), 25% (silver), 15% (glass), 11% (silicon), and 3% (copper).