This document provides an overview of the lead acid battery manufacturing process. It discusses the key steps which include alloy production, grid casting, paste mixing and pasting, plate curing, and assembly. The alloy production process involves preparing mother alloy and KL-alloy from reclaimed lead using furnaces.
A lead-acid battery has electrodes mainly made of lead and lead oxide, and the electrolyte is a sulfuric acid solution. When a lead-acid battery is discharged, the positive plate is mainly lead dioxide, and the negative plate is lead. The lead sulfate is the main component of the positive and negative plates when charging.
The lead battery is manufactured by using lead alloy ingots and lead oxide It comprises two chemically dissimilar leads based plates immersed in sulphuric acid solution. The positive plate is made up of lead dioxide PbO2 and the negative plate with pure lead.
When the plates are connected together, they make up the battery grid. There are two methods for manufacturing plates: oxide and grid production, and pasting and curing. The first step in oxide and grid production is making lead oxide. There are a few options for manufacturers to create lead oxide from lead ingots.
(1) Lead powder and cast alloy grid: The lead powder is the primary raw material for making battery plate active material. The qualified lead bars are cut into lead pellets filled in the ball mill, and through the rotating drum, the lead balls fall under the action of their gravity, collide with each other, and rub into powder.
The electrolyte in a lead-acid battery is a solution of sulfuric acid, while the electrodes are mostly constructed of lead and lead oxide. Positive plates of lead-acid batteries that are discharged primarily contain lead dioxide, while negative plates primarily contain lead.