Economical production of various battery cell formats made of different materials in small to medium batch sizes is rarely possible using today's stacking processes. A new approach integrates previously discrete steps in manufacturing to form a continuous, fully automated and therefore flexible stacking process in terms of material and format.
Cycle life is one of the key properties of batteries. The stacking battery has more tabs, the shorter the electron transmission distance, and the smaller the resistance, so the internal resistance of the stacking battery can be reduced, and the heat generated by the battery is small.
The battery cell used stacking technology has the advantages of small internal resistance, long life, high space utilization, and high energy density after group.
The cell using the winding process has a lower space utilization rate due to the curvature at the winding corner; while the stacking battery process can make full use of the battery space. Therefore, under the same volume cell design, the energy density is also increased accordingly. 2. The structure is more stable
In terms of battery performance, compared with the winding technology, the lamination stacking technology can increase the energy density of the battery by 5%, increase the cycle life by 10% and reduce the cost by 5% under the same conditions. What is Cell Lamination & Stacking Process?
Each battery cell only needs to cut the cathode and negative electrodes once, which is less difficult; However, the cutting of stacked sheets is cumbersome, and each stacking battery has dozens of small pieces, which is prone to defective products, so a single stacked battery is prone to problems such as cross section.