Thin film photovoltaic (PV) technologies often utilize monolithic integration to combine cells into modules. This is an approach whereby thin, electronically-active layers are deposited onto inexpensive substrates (e.g. glass) and then interconnected cells are formed by subsequent back contact processes and scribing.
The three most widely commercialized thin film solar cell technologies are CIGS, a-Si, and CdTe. The straight bandgap (Table 1) is a property shared by all three of these materials, and it is this property that allows for the use of extremely thin materials .
Thin-film solar cells (TFSCs), also known as second-generation technologies, are created by applying one or more layers of PV components in a very thin film to a glass, plastic, or metal substrate.
Thin-film solar cells, on the other hand, are more efficient, require fewer resources, and produce results in a shorter amount of time. Also, they are less expensive. First-generation solar cells, in contrast to second-generation solar cells, are abundant and do not emit harmful by-products during their operation.
In this survey, the thin film solar cells are broken down into two categories: classic and innovative technology. A contrast is shown between the many kinds of thin-film solar cells that have been created to improve efficiency. We will explore the major aspects of the different models.
In a nutshell, photovoltaic cells are devices that convert solar energy into electrical energy. Approximately 89% of the global solar cell market is made up of first-generation solar cells [2, 3]. Crystalline silicon was used in the first generation of solar cells.