Solar energy can be stored primarily in two ways: thermal storage and battery storage. Thermal storage involves capturing and storing the sun’s heat, while battery storage involves storing power generated by solar panels in batteries for later use. These methods enable the use of solar energy even when the sun is not shining.
Storage enables electricity systems to remain in balance despite variations in wind and solar availability, allowing for cost-effective deep decarbonization while maintaining reliability. The Future of Energy Storage report is an essential analysis of this key component in decarbonizing our energy infrastructure and combating climate change.
It is employed in storing surplus thermal energy from renewable sources such as solar or geothermal, releasing it as needed for heating or power generation. Figure 20 presents energy storage technology types, their storage capacities, and their discharge times when applied to power systems.
Energy storage is a potential substitute for, or complement to, almost every aspect of a power system, including generation, transmission, and demand flexibility. Storage should be co-optimized with clean generation, transmission systems, and strategies to reward consumers for making their electricity use more flexible.
Thermal energy storage (TES), with variable power ratings, can store energy for hours to days . It is employed in storing surplus thermal energy from renewable sources such as solar or geothermal, releasing it as needed for heating or power generation.
As a result, new battery energy storage systems are being developed that can withstand continuous and prolonged mechanical deformation, such as bending, twisting, and stretching, while also delivering high power and energy over long time cycles.