As distance between two capacitor plates decreases, capacitance increases - given that the dielectric and area of the capacitor plates remain the same. So, why does this occur? As distance between two capacitor plates decreases, capacitance increases - given that the dielectric and area of the capacitor plates remain the same.
Explanation: Larger plate area results in more field flux (charge collected on the plates) for a given field force (voltage across the plates). PLATE SPACING: All other factors being equal, further plate spacing gives less capacitance; closer plate spacing gives greater capacitance.
As Capacitance C = q/V, C varies with q if V remains the same (connected to a fixed potential elec source). So, with decreased distance q increases, and so C increases. Remember, that for any parallel plate capacitor V is not affected by distance, because: V = W/q (work done per unit charge in bringing it from on plate to the other) and W = F x d
Explanation: Closer spacing results in a greater field force (voltage across the capacitor divided by the distance between the plates), which results in a greater field flux (charge collected on the plates) for any given voltage applied across the plates.
The capacitance of a capacitor is affected by the area of the plates, the distance between the plates, and the ability of the dielectric to support electrostatic forces. This tutorial explores how varying these parameters affects the capacitance of a capacitor. Larger plates provide greater capacity to store electric charge.
The capacitor's ability to hold charge, which is capacitance, has increased because it is now able to store more charge per unit potential.
PLATE SPACING: All other factors being equal, further plate spacing gives less capacitance; closer plate spacing gives greater capacitance. Explanation: Closer spacing results in a greater field force (voltage across the capacitor divided by …