These characteristics, together with their long-term stability and high cyclability, make supercapacitors an excellent energy storage device. These are currently deployed in a variety of applications, either in conjunction with other energy storage devices (mostly batteries) or as self-contained energy sources.
While supercapacitors and batteries serve distinct energy storage applications, they often share common material components, such as carbon-based materials. For instance, carbon nanotubes (CNTs), widely used in supercapacitors, have also been explored as electrode materials in batteries.
This approach addresses the common limitation of batteries in handling instantaneous power surges, which is a significant issue in many energy storage applications. The development of a MATLAB Simulink model to illustrate the role of supercapacitors in reducing battery stress is demonstrated.
Classification of supercapacitors has been discussed. Supercapacitors are considered comparatively new generation of electrochemical energy storage devices where their operating principle and charge storage mechanism is more closely associated with those of rechargeable batteries than electrostatic capacitors.
Based on their performance, supercapacitors can be placed somewhat in middle of rechargeable batteries and conventional electrostatic capacitors since supercapacitors have higher energy and power densities when compared with electrostatic capacitors and rechargeable batteries respectively.
Therefore, high-performance supercapacitors are always desirable in supplementing the batteries more effectively. Furthermore, to effectively deploy supercapacitors as the supplementary energy storage system with batteries, different shortcomings of the supercapacitors must be effectively addressed.