Capacitor Discharge Graph: The capacitor discharge graph shows the exponential decay of voltage and current over time, eventually reaching zero. What is Discharging a Capacitor? Discharging a capacitor means releasing the stored electrical charge. Let’s look at an example of how a capacitor discharges.
It will spring back to its relaxed state whenever it is released from whatever is keeping it stretched. More specifically, a capacitor discharges whenever the voltage in the circuit the capacitor is part of has a smaller magnitude than the voltage stored on the capacitor.
C affects the discharging process in that the greater the capacitance, the more charge a capacitor can hold, thus, the longer it takes to discharge, which leads to a greater voltage, V C. Conversely, a smaller capacitance value leads to a quicker discharge, since the capacitor can't hold as much charge, and thus, the lower V C at the end.
After 2 time constants, the capacitor discharges 86.3% of the supply voltage. After 3 time constants, the capacitor discharges 94.93% of the supply voltage. After 4 time constants, a capacitor discharges 98.12% of the supply voltage. After 5 time constants, the capacitor discharges 99.3% of the supply voltage.
Capacitors oppose changes of voltage. If you have a positive voltage X across the plates, and apply voltage Y: the capacitor will charge if Y > X and discharge if X > Y. calculate a capacitance value to discharge with certain voltage and current values over a specific amount of time
The time it takes for the capacitor to fully discharge can be calculated using the: t = RCln (V0/Vt) where R is the resistance of the resistor, C is the capacitance of the capacitor, V0 is the initial voltage across the capacitor (10V in this case), and Vt is the voltage at which we consider the capacitor to be fully discharged (0V in this case).