In this article, we will explore the primary functions of capacitors and how they contribute to the operation of electronic circuits. One of the most fundamental functions of a capacitor is its ability to store electrical energy. A capacitor consists of two conductive plates separated by an insulating material called a dielectric.
A capacitor consists of two conductive plates separated by an insulating material called a dielectric. When a voltage is applied across the plates, an electric field is created, causing electrons to accumulate on one plate while the other plate becomes positively charged.
When a sudden voltage surge occurs, a capacitor can absorb the excess energy, preventing it from reaching sensitive components and causing harm. This protective function is often utilized in power supply circuits, where capacitors are placed across the power rails to suppress voltage spikes and transients.
By placing capacitors at strategic locations in the circuit, designers can effectively smooth out voltage fluctuations and maintain a consistent voltage level, which is essential for the proper operation of electronic devices.
In this mini review, we summarize recent progress in smart supercapacitors with the functions of self‐healing, shape memory, electrochromism, and photodetection, including the design of electrode materials, the optimization of the configuration, and working mechanism.
This separation of charges allows the capacitor to store electrical energy in the form of an electrostatic field. The amount of energy a capacitor can store depends on its capacitance, which is measured in farads (F). The higher the capacitance, the more energy the capacitor can store for a given voltage.