There are mainly two categories of capacitor bank according to their connection arrangements. Shunt capacitor. Series capacitor. The Shunt capacitor is very commonly used. Q is required KVAR. P is active power in KW. cosθ is power factor before compensation.
The capacitor bank was to be power capacitor based with automatic control by power factor regulator. This type of device was chosen as a compensator, because of its price compared i.e. to active filters.
Increase in the number of capacitors in a bank will increase the energy storage capacity of the bank. The intent of this document is to explain the capacitor bank sizing calculation and power factor correction . 2. Purpose Capacitor banks are used in power factor improvement and correction to eliminate reactive components at the load side.
Since the detuning factor for the project was given as p=7%, one knows that the capacitor bank needs to be equipped with reactors. For this reason, some calculations have to be performed, in order to fit the power of the capacitors and its rated voltage taking into account reactive power of a detuning reactors.
When a number of capacitors are connected together in series or parallel, forms a capacitor bank. These are used for reactive power compensation. Connecting the capacitor bank to the grid improves reactive power and hence the power factor. As shown in the figure, capacitors are connected in series to improve the power factor rating.
Before selecting the capacitor bank the following points need to be noted, What is the desired power factor to be maintained at the billing end. What is the required rating of the capacitor bank. Where the capacitor bank needs to be located. The formula used for sizing the capacitor bank is read more...