Raw materials are the starting point of the battery manufacturing process and hence the starting point of analytical testing. The main properties of interest include chemical composition, purity and physical properties of the materials such as lithium, cobalt, nickel, manganese, lead, graphite and various additives.
Usually a battery is made up of cells. The cell is what converts the chemical energy into electrical energy. A simple cell contains two different metals (electrodes) separated by a liquid or paste called an electrolyte. When the metals are connected by wires an electrical circuit is completed. One metal is more reactive than the other.
In a commercial battery, the electrodes are often made from zinc and manganese oxide. These electrodes are separated by the electrolyte - usually in the form of a paste or a liquid. When the battery is wired up in a circuit, an electrochemical reaction takes place.
Most battery electrodes consist of electroactive materials coated on the current collector. To coat this active material, the powders are transformed into slurries by mixing with suitable solvents. Battery slurries typically consist of the active materials, binders, conductive additives and solvents.
Significant modifications can also be made to the battery components, such as the cathode, anode or electrolyte, to make them inherently safe.
Lithium metal batteries (not to be confused with Li–ion batteries) are a type of primary battery that uses metallic lithium (Li) as the negative electrode and a combination of different materials such as iron disulfide (FeS2) or MnO2 as the positive electrode.