The market for solar modules has evolved in recent years, moving away from the relatively exclusive, ribbon-based connection of full-square solar cells to a range of cell formats and connection technologies that are constantly improving performance (e.g., split cells, shingled cells, high-density cell interconnection). 3.7.5.
Future prospects of solar technology Solar energy is one of the best options to meet future energy demand since it is superior in terms of availability, cost effectiveness, accessibility, capacity, and efficiency compared to other renewable energy sources , .
Provided by the Springer Nature SharedIt content-sharing initiative Policies and ethics The future of solar cell technology is poised for remarkable advancements, offering unprecedented potential to revolutionize renewable energy generation. This chapter highlights key areas of innovation and progress in solar cell research.
The efficiency drive in future solar cell technology is aimed at maximizing the energy conversion efficiency of solar cells to make them more competitive, cost-effective, and capable of meeting the increasing global energy demand sustainably.
To overcome these challenges, researchers and engineers have been diligently working on emerging solar cell technologies, such as thin-film solar cells, perovskite solar cells, and organic photovoltaics. These technologies promise the potential for higher efficiency, lower manufacturing costs, and novel applications.
Photovoltaic (PV) solar cells are in high demand as they are environmental friendly, sustainable, and renewable sources of energy. The PV solar cells have great potential to dominate the energy sector. Therefore, a continuous development is required to improve their efficiency.