The four compensation capacitors are divided into parallel capacitance team and series capacitance team, and the work mechanism of the compensation capacitance on the output power, efficiency and the terminal voltage of the system are deeply analyzed. Then, the optimization approach based on Bayesian is given.
Through the logic drive circuit, pulse width modulation circuit, zero point detection circuit and power factor detection circuit, the on-off of the self-turning off device in the switch circuit was controlled to control the charging and discharging voltage of the compensation capacitor, and then the capacitor compensation current was controlled.
Input capacitance is easily compensated by adding a feedback capacitor into the circuit. The value of the feedback capacitor should be just large enough to achieve the desired overshoot response, because larger values cause a loss of high-frequency performance. 1. Ron Mancini, Op Amps For Everyone (Newnes Publishers, 2003).
It is observed that as the size of the compensation capacitor is increased, the low-frequency pole location ω1 decreases in frequency, and the high-frequency pole ω2 increases in frequency. The poles appear to “split” in frequency.
In addition, a better understanding of the internals of the op amp is achieved. The minor-loop feedback path created by the compensation capacitor (or the compensation network) allows the frequency response of the op-amp transfer function to be easily shaped.
Compensation of the output-buffer dead-zone region is provided by Q18 and Q19. Output-current limiting and short-circuit protection is imple-mented by Q15 and Q21–Q25. And of course, the frequency compensation is accomplished by the 30 pF capacitor around Q16 and Q17, as discussed in Section II. Fig. 45.