In the end, a control framework for large-scale battery energy storage systems jointly with thermal power units to participate in system frequency regulation is constructed, and the proposed frequency regulation strategy is studied and analyzed in the EPRI-36 node model.
Control strategy of energy storage for system frequency regulation ESS has a fast power response speed, and be used to generate virtual inertia for primary frequency control, which increases the stability of system frequency with large-scale grid-connected PV generation.
With the gradual increase of energy storage equipment in the power grid, the situation of system frequency drop will become more and more serious. In this case, energy storage equipment integrated into the grid also needs to play the role of assisting conventional thermal power units to participate in the system frequency regulation.
The control strategy for frequency/voltage regulation with energy storage devices is presented. Furthermore, solar cell–supercapacitor devices (SCSD) are introduced as a series array to solve the problem that the solar cell cannot work on the maximum power point (MPP) under partial shading conditions.
Through the large-scale energy storage power station monitoring system, the coordinated control and energy management of a variety of energy storage devices are realized.
The battery energy storage system is used to compensate for the power shortage of thermal units in the first 5 seconds to achieve the purpose of regulating the frequency stability of the grid system.