Lithium-ion capacitors (LICs) have gained significant attention in recent years for their increased energy density without altering their power density. LICs achieve higher capacitance than traditional supercapacitors due to their hybrid battery electrode and subsequent higher voltage.
Authors to whom correspondence should be addressed. Lithium-ion capacitors (LiC) are promising hybrid devices bridging the gap between batteries and supercapacitors by offering simultaneous high specific power and specific energy. However, an indispensable critical component in LiC is the capacitive cathode for high power.
Design of Lithium-Ion Capacitors In terms of LIC design, the process of pre-lithiation, the working voltage and the mass ratio of the cathode to the anode allow a difference in energy capacity, power efficiency and cyclic stability. An ideal working capacity can usually be accomplished by intercalating Li + into the interlayer of graphite.
Energy storage mechanisms of LICs compared with LIBs and SCs (b). Recently, lithium-ion capacitors (LICs), typically consisting of LIB-typed cathode and SC-typed anode, is regarded as a promising candidate to bridge the gap between LIBs and SCs which can deliver both high energy and power densities [, , , ].
However, in the present state of the art, both devices are inadequate for many applications such as hybrid electric vehicles and so on. Lithium-ion capacitors (LICs) are combinations of LIBs and SCs which phenomenally improve the performance by bridging the gap between these two devices.
Rauhala T, Leis J, Kallio T, Vuorilehto K. Lithium-ion capacitors using carbide-derived carbon as the positive electrode–a comparison of cells with graphite and Li 4 Ti 5 O 12 as the negative electrode. J Power Sources. 2016;331:156. Xu N, Sun X, Zhao F, Jin X, Zhang X, Wang K, Huang K, Ma Y.