When used as the negative electrode in sodium-ion batteries, the prepared hard carbon material achieves a high specific capacity of 307 mAh g –1 at 0.1 A g –1, rate performance of 121 mAh g –1 at 10 A g –1, and almost negligible capacity decay after 5000 cycles at 1.0 A g –1.
Abstract Carbon materials, including graphite, hard carbon, soft carbon, graphene, and carbon nanotubes, are widely used as high-performance negative electrodes for sodium-ion and potassium-ion bat...
In this work, we show the benefit of a mixed composite electrode containing ionic and electronic conducting additives for a sodium-ion battery negative electrode. Hard carbon electrodes with 5 % additive containing different proportions of zeolite and carbon black are coated.
Hard carbons are extensively studied for application as anode materials in sodium-ion batteries, but only recently a great interest has been focused toward the understanding of the sodium storage mechanism and the comprehension of the structure–function correlation.
It comprehensively elucidates the key bottleneck issues of the hard carbon anode structure and electrolyte in sodium-ion batteries and proposes several solutions to enhance the performance of hard carbon materials through structural design and electrolyte optimization.
Previous research has shown that defects in hard carbon can have both positive and negative effects on the performance of sodium-ion batteries , , , , , .