The research goal in the emerging thin-film solar cells field is to advance the efficiency, stability, and scalability of this innovative solar technology. Researchers aim to optimize the power conversion efficiency of thin-film solar cells by exploring new materials, device architectures, and manufacturing processes.
With intense R&D efforts in materials science, several new thin-film PV technologies have emerged that have high potential, including perovksite solar cells, Copper zinc tin sulfide (Cu 2 ZnSnS 4, CZTS) solar cells, and quantum dot (QD) solar cells. 6.1. Perovskite materials
As research and development efforts continue, emerging thin-film solar cells are becoming more efficient, with improved power conversion rates and stability. The research goal in the emerging thin-film solar cells field is to advance the efficiency, stability, and scalability of this innovative solar technology.
Thin film solar cells are favorable because of their minimum material usage and rising efficiencies. The three major thin film solar cell technologies include amorphous silicon (α-Si), copper indium gallium selenide (CIGS), and cadmium telluride (CdTe).
The first thin-film solar cell candidates for large-scale manufacture were based on cadmium sulphide. Attempts to commercialise this technology in the mid-1970s and early 1980s were unsuccessful, attributed to stability issues with the cells and the appearance of amorphous silicon as an apparently superior contender at that point in time.
Thin-film solar cell modules are reaching the market in accelerating quantities, giving the opportunity for these potentially lower cost approaches to establish their credentials.